Wikipedia

Resultados de la búsqueda

Clase 2:INTEGRAL CURVILINEA DE UN CAMPO VECTORIAL.

Integral curvilínea de un campo vectorial

Para F : Rn → Rn un campo vectorial, la integral de línea sobre la curva C, parametrizada como r(t) con t \in [a, b], está definida como:
\int_C \mathbf{F}(\mathbf{r})\cdot\,d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt.
donde \cdot es el producto escalar y r: [a, b] → C es una parametrización biyectiva arbitraria de la curva C de tal manera que r(a) y r(b) son los puntos finales de C.
Las integrales de línea de un campo vectorial son independientes de la parametrización siempre y cuando las distintas parametrizaciones mantengan el sentido del recorrido de la curva. En caso de elegirse dos parametrizaciones con sentidos de recorrido contrarios, las integrales de línea del mismo campo vectorial resultarán con iguales módulos y signos contrarios.
Otra forma de visualizar esta construcción es considerar que
\int_C \mathbf{F}(\mathbf{x})\cdot\,d\mathbf{x} = 
\int_C \mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n
donde se aprecia que la integral de línea es un operador que asigna un número real al par (C,\mathbf{\omega}) donde
\mathbf{\omega}=\mathbf{F}_1 dx^1+\mathbf{F}_2 dx^2+\cdots+\mathbf{F}_n dx^n
es una 1-forma.

Independencia de la curva de integración

Si el campo vectorial F es el gradiente de un campo escalar G (o sea, si el campo vectorial F es conservativo), esto es:
\nabla G = \mathbf{F},
entonces la derivada de la función composición de G y r(t) es:
\frac{dG(\mathbf{r}(t))}{dt} = \nabla G(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)
con lo cual, evaluamos la integral de línea de esta manera:
La integral de F sobre C depende solamente de los valores en los puntos r(b) y r(a) y es independiente del camino entre a y b.
Por esta razón, un campo vectorial que es el gradiente de un campo escalar, es llamado independiente del camino o también conservativo. Cabe destacar que si tenemos un campo arbitrario; tal que, las derivadas parciales iteradas sean iguales y además sea convexo; entonces este campo es el gradiente de una función potencial φ. Y por lo mencionado anteriermente la integral de línea del campo es independiente del camino.



\int_C \mathbf{F}(\mathbf{x})\cdot\,d\mathbf{x} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt = \int_a^b \frac{dG(\mathbf{r}(t))}{dt}\,dt = G(\mathbf{r}(b)) - G(\mathbf{r}(a)).

No hay comentarios:

Publicar un comentario